The Powersystems Renewables NewsWatch provides a roundup of the latest headlines relating to Hydrogen

Earlier this month Powersystems reviewed Green Hydrogen as a renewable energy technology and some of the challenges the sector faces.

Unlike the EU and several European countries (e.g. Portugal, Spain, France, Germany, Norway, and the Netherlands), the UK does not yet have a national hydrogen strategy. In its latest progress report to Parliament, the UK Committee on Climate Change recommended that the Department of Business, Energy & Industrial Strategy develop a hydrogen strategy by 1H 2021, aiming for large scale hydrogen trials to begin in the early 2020s.

The UK government’s “Ten Point Plan for a Green Industrial Revolution” was published in November 2020 stating the intention of publishing a hydrogen strategy in 2021. This also set a target of 40 GW of offshore wind generation capacity and 5 GW of low carbon hydrogen production by 2030, appearing to indicate an intention to play a leading role in European hydrogen development.

In December 2020, the Scottish Government produced a “Hydrogen Assessment” setting out three possible scenarios for hydrogen production in Scotland including the potential for exports. This assessment is expected to lead to a Hydrogen Action plan and Hydrogen Policy Statement for Scotland.

Sustainable hydrogen will be an important contributor to the decarbonisation of the economy, but it will need support. Burning fossil fuels results in carbon pollution. However, energy-efficiency, renewables, waste and green hydrogen are ways to secure a more economically stable and natural world.

Making the market involves ensuring that sustainable hydrogen has a future in the UK and around the globe. Government and industry need to work alongside each other to create a robust market space and clear road maps for its consumption, infrastructure for its production and storage, and financial markets that offer the services and expertise needed for investment and trade.

Powersystems see the near-term decarbonisation of regional aviation, shipping, rail, infrastructure, heating, major heavy industries and building the UK’s first Hydrogen town as first steps and catalyst, setting the whole industry on a path to meeting Paris Agreement emissions targets.

Clean electrification must be at the heart of the global decarbonisation strategy

There are some sectors where direct electrification is likely to be impossible or prohibitively expensive, and hydrogen will play a key role in decarbonising these. In some sectors where direct electrification is likely to be impossible or prohibitively expensive, hydrogen must be produced in a zero-carbon fashion via electrolysis using zero-carbon electricity, green hydrogen or in a low-carbon fashion using natural gas reforming plus CCS, blue hydrogen, if deployed in a manner that achieves near-total CO2 capture and very low methane leakage. Blue hydrogen will often be cost-effective during the early stages of the transition, particularly where existing grey hydrogen, production can be adapted and retrofitted with CCS. But, in the long-term, green hydrogen will very likely be the cheaper option in most locations, with dramatic cost reductions to below $2/kg possible during the 2020s.

Green Hydrogen will be cost competitive by 2030

Following Powersystems review Climate think-tank Energy Transitions Commission (ETC) has set out the future roles and pathways for clean hydrogen. They advise that the cost of green hydrogen is expected to see “dramatic cost reductions” this decade as the cost of renewable energy and electrolysers fall — to the point where it can compete with grey hydrogen even without a carbon price. In many locations around the globe the future cost of green hydrogen could be below today’s grey hydrogen cost, making the eventual cost of decarbonising hydrogen production very small and potentially even negative.

 Storage will be vital for hydrogen to help solve renewable energy’s big challenges

The world is moving into a Hydrogen economy led by developed economies and the pace looks quite fast. In the most advanced countries, they are setting mid to long term plans. At the close of the first quarter in 2021, over 30 countries have released energy road maps and more than 200 large scale projects have been announced along the value chain.  In the new Green economy the approach is to use hydrogen as an energy carrier to store large amounts of surplus renewable energy for long periods of time and even to export renewable energy to different geographies. Without long term storage renewable capacity above a certain threshold would not be efficient to build.

The inherent variability of renewable energy sources such as wind and solar presents a pressing need for large scale storage of clean electricity. Storing hydrogen gas has become one of the most pertinent research and development areas surrounding hydrogen technology, and will be the key to mainstream adoption.

  • Major UK CCS, hydrogen project makes headway, Based at the St Fergus gas terminal in North East Scotland, the Acorn CCS and hydrogen project is expected to be storing at least 5m tons a year of CO2 by 2030, half the emissions aimed by the UK government.

Building the UK’s first Hydrogen town

Building the UK’s first hydrogen town is not just about replacing the natural gas that most of our homes rely upon today; it’s about reducing our carbon emissions in a safe and secure way. The five companies – which together own and operate around £24bn of energy infrastructure – will also help deliver a network of hydrogen refuelling facilities for zero emissions heavy good vehicles. In addition, Britain’s Hydrogen Network Plan lays out proposals to connect renewables production, carbon capture and storage and hydrogen use for industrial SuperPlaces, helping deliver two clusters by the mid-2020s and two more by 2030.

  • Octopus Energy reveals plans to expand into green hydrogen  
  • A heritage railway is aiding with work to convert a diesel engine to run on hydrogen power
  • First Round-the-World Hydrogen-Powered Vessel Journeys on Quest for Zero-Emission Shipping Industry
  • An innovative new hydrogen-powered catamaran concept is here to show that seafarers can traverse all corners of the globe without releasing any harmful emissions
  • A new unique collaboration aligning the supply and demand side of the hydrogen sector has been launched today (22 April) to drive development of a hydrogen mobility supply chain globally
  • Will Sweden lead the way in hydrogen-powered steelmaking?

 New Hydrogen Collaborations and Pathways

While the probability is high that some countries, such as Germany or Italy, will import hydrogen in the long term, other countries, such as United Kingdom, France or Spain, could become hydrogen exporters. The reasons for this are the higher potential for renewable energies but also a technology-neutral approach on the supply side. Contrasting European hydrogen pathways is an analysis of differing approached in key markets, the Institute of Energy Economics at the University of Cologne (EWI), together with the Oxford Institute for Energy Studies (OIES), analysed what the economic and political parameters relevant to a future hydrogen economy look like in the six European countries Germany, France, the Netherlands, Italy, Spain, and the UK.

 

Hydrogen Initiative in Hamburg unveils 100 MW electrolyser plan

Hamburg Port Authority and other 11 other companies have teamed to form the  Hamburg Green Hydrogen Hub, which comprises Shell, Vattenfall, Mitsubishi Heavy Industries and Warme Hamburg, to form a new network. This collaboration sets to deliver an ambitious green hydrogen network that includes the plan for 100 MW electrolyser. As of 2026, the network partners’ projects could reduce carbon dioxide emissions in Hamburg by 170,000 tonnes each year.

 

 

 

North Sea Green Hydrogen pipeline, one of the current Top 20 projects

GASCADE, Gasunie, RWE, and Shell have signed a declaration of intent regarding a pipeline for green hydrogen from offshore wind in the North Sea. As part of the AquaVentus intiative, the venture contributes to efforts to install 10 GW of electrolysis for green hydrogen derived from offshore wind between Heligoland and the Dogger sand bank.  According to the partners, the project’s economic advantages are “clear”: “The pipeline will replace five High Voltage Direct Current (HVDC) transmission systems, which would otherwise have to be built. It is by far the most cost-effective option for transporting large volumes of energy over distances of more than 400 kilometres.”

 

 

 

 

French, Russian hydrogen partnership announced

This week (27, April) EDF Group and Rosatom have signed an agreement to jointly promote clean hydrogen projects in Russia and Europe. Rosatom said development of hydrogen technologies has an important role to play in the implementation of the Paris Agreement, aimed at keeping the global average temperature increase to below 2 degrees Celsius by 2100.

 

 

 

 

 

 

 

Pin It on Pinterest

Share This

Share this post with your friends!