Green Hydrogen A Renewable Energy Technology

Green Hydrogen A Renewable Energy Technology

Powersystems reviews Green Hydrogen as a renewable energy technology and some of the challenges the sector faces as we wait for the Hydrogen Strategy publication from the UK Government this year.

Hydrogen is the lightest element of the periodic table and the most common substance in the world.  It can be used as feedstock, fuel or energy carrier and does not emit CO2 when burnt, that is why you often hear about its high potential for decarbonising the economy.

Now, as nations come forward with net-zero strategies to align with their international climate targets, hydrogen has once again risen up the agenda for the UK and Australia through to Germany and Japan.

Potentially hydrogen could soon power trucks, planes and ships. It could heat homes, balance electricity grids and help heavy industry to make everything from steel to cement.

But doing all these things with hydrogen would require staggering quantities of the fuel, which is only as clean as the methods used to produce it. Moreover, for every potentially transformative application of hydrogen, there are unique challenges that must be overcome.

In order to meet the 2050 decarbonisation policies and targets, the UK requires deployment of new technologies in traditional roles. One of these is the innovative technology around the uses of Green Hydrogen.

What is Hydrogen?

Hydrogen is an explosive and clean-burning gas. Since the weight of hydrogen is less than air, it rises in the atmosphere and is therefore rarely found in its pure form, (H2).

In a flame of pure hydrogen gas, burning in air, the hydrogen (H2) reacts with oxygen (O2) to form water (H2O) and releases energy.

The energy released enables hydrogen to act as a fuel. This energy can be used with relatively high efficiency.

Hydrogen can be made by splitting water with electricity (electrolysis) or by splitting fossil fuels or biomass with heat or steam, using “reforming” or “pyrolysis”. Any CO2 can be captured and stored.

Hydrogen can be stored, liquified and transported via pipelines, trucks or ships. And it can be used to make fertiliser, fuel vehicles, heat homes, generate electricity or drive heavy industry.

Hydrogen is usually considered an energy carrier, like electricity, as it must be produced from a primary energy source.

In a hydrogen economy, hydrogen would be used in place of fossil fuels, which currently provide four-fifths of the world’s energy supply and emit the bulk of global greenhouse gas emissions. This could aid climate goals because hydrogen only emits water when burned and can be made without releasing CO2.

What is blue hydrogen?

Blue hydrogen is when natural gas is split into hydrogen and CO2 either by Steam Methane Reforming (SMR) or Auto Thermal Reforming (ATR), but the CO2 is captured and then stored. As the greenhouse gasses are captured, this mitigates the environmental impacts on the planet. Simply put, hydrogen is considered blue when the emissions generated from the steam process are captured and stored underground via industrial carbon capture and storage (CSS).

What is brown/black hydrogen?

Brown hydrogen is produced from fossil fuels and currently accounts for around 95 per cent of global production. The oldest way of producing hydrogen is by transforming coal into gas. This gasification process converts fossil-based materials into carbon dioxide, carbon monoxide, and hydrogen. Gasification is achieved at incredible high temperatures without combustion, with a controlled amount of oxygen and/or steam. The carbon monoxide then reacts with water to form carbon dioxide and more hydrogen via a water-gas shift reaction.

Generated via coal gasification syngas and hydrogen can be separated from the other elements using absorbers. It is the result of a highly polluting process since both CO2 and carbon monoxide cannot be reused and are released in the atmosphere.

What is Pink hydrogen?

Hydrogen obtained from electrolysis through nuclear energy is coloured pink.

Hydrogen from Biomass

Hydrogen can also be produced from Biomass via gasification. Depending on the type of biomass but also on the use of carbon capture and storage technologies net carbon emissions can be lower using these technologies

What is green hydrogen?

Green hydrogen is produced using electricity generated from renewables such as solar energy, biomass, electricity (e.g., in the form of solar PV or via wind turbines), instead of fossil fuels. And currently accounts for 1% of overall hydrogen production.

Green hydrogen has the potential to provide clean power for manufacturing, transportation, and more — and its only by-product is water. With green hydrogen, zero carbon emissions are produced. It is in essence the gold standard of hydrogen in the clean energy sector.

Why is green hydrogen a big deal?

Green hydrogen is one of several potential low-carbon fuels that could take the place of today’s fossil hydrocarbons. Admittedly, hydrogen is far from ideal as a fuel. Its low density makes it hard to store and move around. And its flammability can be a problem.

However, the case for hydrogen is clear; the UK requires a zero-emission fuel that is well understood, has extensive regulations and standards in place, is readily scalable and which can be used across multiple energy vectors. Hydrogen is that fuel. In the next decade alone, research by the Fuel Cells and Hydrogen Joint Undertaking  (FCH JU) indicates that hydrogen could reduce CO2 emissions by 1.7 million to 6.3 million tonnes by 2030, supporting the further deployment of 1,800 MW to 9 GW of wind and 830 MW to 4 GW of solar.

There are major technical and economic hurdles to meeting the UK’s Net Zero goals without hydrogen, particularly for heating and transport applications

The country’s gas grid supplies 3x more energy than the electricity grid today, and the transport sector accounted for over 1/3rd of final energy consumption in 2019. While there is significant renewable power generation potential in the UK, notably from offshore wind, electrifying all heating and transport is likely to be an unsurmountable challenge by 2050. Mass electrification would require and overhaul of the current energy system, and massive scale up of batteries, improved transmission systems and smart metering. Alternatively, hydrogen can be integrated into current energy distribution and end-use systems, and utilize high renewables potential in the UK by converting green electrons into green molecules, that can be widely transported and stored seasonally. Mechanisms to store significant volumes of energy are important for coping with extreme environmental events.

Hydrogen is already widely used by industry, so technical problems to storage and transport are not insurmountable. The opportunity for green hydrogen to be applied across a wide range of sectors means there is a large number of companies looking at harnessing and benefiting from a hydrogen fuel economy. The most significant of these are the oil and gas firms (who are increasingly facing the calls to cut back on fossil fuel production). Big oil’s interest in green hydrogen could be critical in getting the fuel through to commercial viability. Cutting the cost of green hydrogen production will require massive investment and massive scale, something the oil majors are uniquely positioned to provide.

Green hydrogen projects and pathways 

Hydrogen offers a pathway to revitalise manufacturing capabilities in the UK and improve the skill base for workers. The UK was a leader in discovering hydrogen and creating fuel cells, and today has several world leading manufacturers and supply chain businesses that with the right support could become global leaders and engines of economic growth for the UK economy. Using hydrogen, the UK could also become a global Centre of Excellence for hydrogen mobility and transport across land, maritime and aviation sectors.

  • A recent report published by Powersystems highlights that hydrogen produced with renewable electricity could compete on costs with fossil fuel alternatives by 2030
  • UK regions are taking steps to capture the scale of the hydrogen opportunity. Scotland has pro-actively driven hydrogen investment and support for regional initiatives, including the BIG HIT project in the Orkneys, this multi-partner plan involves the Port of Cromarty Firth together with SHFCA members ScottishPower (ScottishPower has created a new business division dedicated to delivering green hydrogen) and Pale Blue Dot, as well as other partners including Scotch whisky producers Glenmorangie, Whyte and Mackay and Diageo. This new green hydrogen hub in the Highlands will see Scotland leading the way for the integration and deployment of hydrogen technology and decarbonisation of local industry.
  • The H100 Fife project is designed to be a real life test of the use of hydrogen for heating homes. The idea is to build a facility in Levenmouth, Fife, that will use offshore wind power to generate hydrogen from electrolysers.
  • In Wales, the government has recently launched a consultation on developing the hydrogen energy sector in Wales
  • Across the country, local businesses in East Anglia are partnering with LEPs and local councils to assess opportunities to leverage the region’s rich offshore wind experience to accelerate the hydrogen transition.
  • Announced in February and March 2021, The National Grid currently has two UK Projects underway; FutureGrid, which is trialling hydrogen mixes in off-grid pipelines and Project Union, which is exploring the development of a UK hydrogen ‘backbone’ joining together industrial clusters around the country.
  • Equinor and SSE Thermal have unveiled plans to develop a 100% hydrogen-fuelled power station in the UK’s Humber region – and it’s believed to be a world first.
  • Powersystems recently reported on the global race to produce hydrogen offshore. Wind generation reached its highest ever level, at 17.2GW on 18 December 2020, while wind power achieved its biggest share of UK electricity production, at 60% on 26 August 2020. Yet occasionally the huge offshore wind farms pump out far more electricity than the UK needs. What if you could use wind energy to make hydrogen?
Is the UK late to the green hydrogen party?

Given that on the 8 July 2020, the road map was unveiled by the European Union to promote green hydrogen “as a key priority to achieve the European Green deal and Europe’s clean energy transition.” It is seen as a technology which can bridge the gap between electricity production from renewable energy and the goal of decarbonising a large share of the EU’s energy.

Similar policy developments are underway in the likes of Australia, Canada, Japan, Netherlands, Germany, France, Portugal and the US – the pressure is on ministers to ensure that the UK makes early preparations to become a competitive exporter in the sector.

Presently we can only look at promises made as part of the Ten Point plan for a green industrial revolution announced in November 2020. The UK Government expects that driving the growth of low carbonhydrogen could deliver over GBP 4 billion of private investment in the period up to 2030. The UK Hydrogen strategy was due in March 2021

  • The Nuclear Industry Council (NIC) and Nuclear Industry Association (NIA) published a roadmap outlining how the UK could co-locate electrolysis at 12-13GW of nuclear reactors. This commitment could enable the production of 75 TWh of green hydrogen by 2050, the bodies claim
  • The UK Hydrogen and Fuel Cell Association, has also published a roadmap this month, detailing a potential trajectory for the sector through to 2050. The roadmap has been backed by business giants including Rolls Royce and ITM Power and explores how the UK could target 80GW of green hydrogen capacity by 2050.
  • Powersystems recently shared on what we need to know about hydrogen on climate change and decarbonisation in the UK ahead of COP26 In November 2021
What about hydrogen vehicles?

Alongside oil and gas firms, renewable developers see green hydrogen as an emerging market, with offshore wind leader Ørsted last month trumpeting the first major project to exclusively target the transport sector in Denmark. The eye-catching Toyota Mirai helped fuel early hopes that hydrogen fuel-cell vehicles might vie with electric cars to take over from the internal combustion engine. But as the EV market has boomed, the prospect of hydrogen being a serious contender has faded from view, at least in the passenger vehicle segment.There are roughly 18,000 hydrogen fuel-cell cars in the world today and 31,000 forklifts, compared to more than 373,600 plug-in electrics up to December 2020.That said, pundits still expect hydrogen to play a role in decarbonizing some vehicle segments, with forklifts and heavy-duty trucks among the most likely to benefit.

  • Powersystems looks at the most ambitious shake-up in the bus sector in a generation. The 5-year new funding investment aims to deliver 4,000 new British-built electric/hydrogen buses to provide clean, quiet, zero-emission travel
  • The NHS outlined plans to trial hydrogen-powered ambulances in London later this year. The organisation is sourcing retrofitted hydrogen combustion technology from ULEMCo and pairing it with battery technology from Promech Technologies
  • Jaguar Land Rover (JLR) updated its business strategy to fully electrify Jaguar models by 2025, with another ambition to begin testing hydrogen fuel cell electric prototypes in the UK this year
  • Toyota, Daimler and BMW are leading a group of 13 companies across the world, investing $10 billion over the next decade in developing hydrogen technology and infrastructure. Government investment also has a role to play
  • Bath Area Trams Association (BATA) has announced that it is in detailed discussions with American transportation system manufacturer TIG/m and consultants TenBroeke Engineering for a wire-free hydrogen tram project
  • Powersystems reports on Hydrogen or electric vehicles? Why the answer is probably both – The distinct virtues of the two main emerging types of greener transport mean both are likely to flourish, depending on the requirements of different types of user
  • In Northern Ireland, the first three hydrogen fuel cell double decker busses entered service on Northern Ireland a further 142 buses to come.
  • In the North East – Teeside, which produces most of the UK’s current hydrogen, a hydrogen transport Centre of Excellence is being set up and funded by the government, with local leaders having even wider hydrogen economy aspirations
  • The Government has announced £30m of investment in EV and hydrogen technology to help launch studies into the creation of a UK lithium supply chain, improvements in battery safety and the re-use of car batteries. The Department for Business, Energy and Industrial Strategy (BEIS) revealed the plans, which include a project to extract lithium from hard rock in Cornwall as well as studies into hydrogen storage and the development of solid-state batteries.
Leading sector for UK job creation

Green hydrogen has the potential to become a leading sector in the UK for job creation and exports.

The UK is currently a global leader in the manufacture and design of hydrogen electrolysis systems, with decades of expertise in hydrogen storage, transportation, and combustion technologies. These include the world’s first PEM electrolysis Gigafactory built by ITM Power, membrane free electrolysers developed by CPH2, and high resiliency electrolysers built for the UK & French nuclear fleets by TP Group.

Other emerging technologies Include Solid Oxide Electrolysers currently under development by CERES Power and HiiROC’s plasma process technology.

74,000 jobs could be created from a commitment to hydrogen by the government and supported by appropriate measures

Supporting these highly specialised businesses and other innovative technology companies require highly skilled workers creating thousands of well-paid manufacturing jobs across the UK will provide a competitive advantage towards an emerging global market demand.

Longer-term private sector vision

These new projects may seem small in comparison to the UK’s broader transport, industrial and heat sectors. But it is clear that there is strong private sector support for longer-term, overarching initiatives that deliver an ongoing transition beyond initial pilots.

  • The Green Hydrogen Catapult, for example, has convened seven big businesses under a shared mission to increase the world’s green hydrogen production fifty-fold by 2026 – in a move they claim will halve costs
  • Business members of the Catapult include Iberdrola, Ørsted, ACWA Power, CWP Renewables, Envision, Yara, and Snam
  • Away from the private sector, non-profit the Rocky Mountain Institute will provide support alongside the UN’s pre-COP26 ‘Race to Zero’

£320 billion could be generated by the Hydrogen industry for the UK economy

  • Similarly, trade bodies including WindEurope and SolarPowerEurope received backing from Bill-Gates-backed Breakthrough Energy last year to form the Renewable Hydrogen Coalition
  • And, while the Catapult is global and the Coalition covers all of Europe, the UK does play host to its own Hydrogen Taskforce, which includes the likes of Shell and BP

The Hydrogen Taskforce is a coalition of the hydrogen industry’s largest organisations that operate in and innovate across this sector. Its aim is to secure the role of hydrogen in the future energy mix.

The Hydrogen Taskforce is committed to working with Government to secure tangible support to aid the creation of infrastructure and delivery frameworks, helping the government to deliver on its promises to level up the regions and its Net Zero by 2050 commitments.

The Hydrogen Taskforce aims to enable the UK to become a world leader in the international application and service of hydrogen, to deliver excellence throughout the supply chain and create a globally attractive export.

All in all, it would seem that all of the ingredients are ready for the UK to begin dramatically decarbonising and scaling up its hydrogen sector. Over the coming weeks, all eyes will be on BEIS, pushing it to bring the Hydrogen Strategy to the table and understand the actions we now need to take as part of the Rollout plan for a UK hydrogen economy.

 

Powersystems supports Isle of Wight anaerobic digestion plant

Powersystems supports Isle of Wight anaerobic digestion plant

Powersystems, have completed the commissioning of a private wire to supply renewable electricity between Black Dog Biogas, the owner of an anaerobic digestion plant near Newport on the Isle of Wight to Vestas’ neighbouring wind blade manufacturing facility.

This follows on from Powersystems original involvement in 2016 where they delivered both the grid connection and electrical balance of plant on what was the first Active Network Management (ANM) system to be carried out on SSEN network on the Isle of White.

Powersystems installed the high voltage (HV)  infrastructure at both Black Dog Biogas and Vestas to allow for the interconnection of their 11kV Networks.

Darren Sampson, Project Manager at Powersystems said,

“Powersystems installed, tested and commissioned a Schneider Genie Evo Panel as an extension to Vestas existing infrastructure to enable generated power to be exported from the Black Dog Site.  New high voltage switch gear was installed at the Black Dog site, with motor control to allow Vestas to benefit from either green energy or alternatively via their existing metered connection when the site is under maintenance.

The system is monitored and operated automatically via an Argand Solutions panel which monitors the HV network across both sites.

When the Vestas site has a low demand for energy , the bio gas  plant is able to automatically move their export position to enable them to power directly top the grid.  The changeover over supplies are only anticipated during times that the Vestas  sites is powered down for an annual maintenance. The system is therefore configured to ensure that all other times Vestas will be powered 24/7 by green energy, thus reducing their carbon footprint.

Led by Black Dog Biogas and its manager Earth Capital, the initiative will supply low-carbon electricity to Vestas’ facility. Vestas will use this renewable electricity to manufacture offshore wind turbine blades that will generate low carbon power in wind farms. The project is the first-of-its-kind on the Isle of Wight.

Black Dog Biogas generates sufficient power to supply around 80% of Vestas’ needs, as well as around 1,200 homes on the Isle of Wight.

The anaerobic digestion plant
The Company’s biogas generates renewable electricity through anaerobic digestion, where organic matter, such as maize and grass, in this case 100% sourced from the Isle of Wight, are broken down by enzymes to produce biogas and biofertiliser.

Black Dog uses the biogas as a fuel in two combined-heat-and-power units to generate renewable heat and electricity. The nutrient-rich biofertiliser is spread back onto arable farmland on the Isle of Wight, helping to grow more crops for the Black Dog facility and promoting sustainable agricultural practices.

This helps support a circular economy and avoids the use of carbon intensive fertilisers on the Island.

James Luter, Senior Factory Director at Vestas’ Isle of Wight facility said,

“Our plant on the Isle of Wight is strategically important to our growing offshore business. The UK is a world leader in offshore wind and the Government has unveiled ambitious plans to expand capacity further, a vision we wholeheartedly support.

“We’re pleased that we can contribute to a more sustainable future, by now using renewable energy from Black Dog to manufacture our blades.”


Dr Simon Crook, Director of Black Dog and Investment Director of Earth Capital said,

“This is a great opportunity for two neighbouring green businesses to deliver a scheme that both makes environmental and commercial sense. We could not have wished for a better partner with which to deliver this project.

“Collaborations such as this are vital in helping the UK reduce carbon emissions and embrace renewable energy. Biogas is an important part of the low-carbon energy mix and it has the potential to reduce waste to landfill by converting household food waste into energy as well.”

Earth Capital, the manager of Black Dog Biogas, is invested in the project through the firm’s Nobel Sustainability Fund®, a multi-phase, multi-geography fund, which invests across the sustainable and impact private markets, accelerating companies for growth, expansion, and subsequent acquisition.

Harnessing the Green Industrial Revolution
 Last year the UK Government announced a Ten Point Plan to mobilise government investment and to drive job creation to harness the Green Industrial Revolution.

Advancing offshore wind was recognised as a priority within the Ten Point Plan, with the UK setting an ambitious target of quadrupling the country’s offshore wind capacity by 2030.

To speak with Powersystems, please contact us by...

Phone

01454 318000

Email

enquiries@powersystemsuk.com

Talk

Request a call back

Powersystems UK Delivering Greener Power Solutions

Powersystems Compliance with Government Guidance on Managing Risk of Covid-19

Powersystems Compliance with Government Guidance on Managing Risk of Covid-19

Powersystems update on compliance following Government Guidance on Covid -19

The UK is currently experiencing a public health emergency as a result of the COVID-19 pandemic. It is critical that employers, employees and the self-employed take steps to keep everyone safe.

COVID-19 is a public health emergency. Everyone needs to assess and manage the risks of COVID-19, and in particular businesses should consider the risks to their workers and visitors.

Powersystems compliance with government guidance on managing risk of Covid-19

As an employer, Powersystems have a legal responsibility to protect workers and others from risk to their health and safety. This means we need to think about the risks they face and do everything reasonably practicable to minimise them, recognising we cannot completely eliminate the risk of COVID-19.

Powersystems have made sure that the risk assessment for our business addresses the risks of COVID-19, using this Government Guidance to inform our decisions and control measures to ensure we meet compliance.

We have also considered the security implications of any decisions and control measures that we have put in place, as any revisions could present new or altered security risks that may require mitigation.

Powersystems risk assessment is not about creating huge amounts of paperwork, but rather about identifying sensible measures to control the risks in our workplace.

Powersystems have a duty to consult our people on health and safety. We do this by listening and talking to them about the work and how they will manage risks from COVID-19.

The people who do the work are often the best people to understand the risks in the workplace and will have a view on how to work safely.

Powersystems have a health and safety representative, known as the SHEQ Manager for more information on these documents please contact the Powersystems SHEQ Manager on 01454 318 000

To speak with Powersystems, please contact us by...

Phone

01454 318000

Email

enquiries@powersystemsuk.com

Talk

Request a call back

Powersystems UK Delivering Greener Power Solutions

2020 New Apprentices at Powersystems 

2020 New Apprentices at Powersystems 

Powersystems has just completed its 2020 apprenticeship programme and welcomes two new recruits, Archie Whiteford and Sam Lewis.

They will undergo on-site training coupled with block release at college to achieve a recognised qualification as an Electrician.
Powersystems Welcomes Archie Whiteford  

Apprenticeships Programme at Powersystems

Powersystems is committed to training local talent and providing good career opportunities.  Powersystems offers a three year apprenticeships programme followed by a two year Powersystems training scheme to become an Approved Electrician.

 

 

Powersystems Welcomes Sam Lewis 

What Are Apprenticeships Programmes?

Apprenticeship programmes are occupational training programmes that combine on-the-job work experience with technical or classroom study. Such programmes are designed to develop useful job skills in individuals entering the work force. These programmes, which are designed to address the need for better trained entry-level workers and help young people make the transition from school to the work world.

Powersystems maintain a thriving apprenticeship programme.

 

 

Is an Apprenticeships Programme Ideal for you?

Apprenticeships are ideal if you have a clear idea of the career you’d like to pursue, and you’re willing to commit to work and study. Unlike in school, at college or on a traditional degree course, the majority of your learning will be through on-the-job training in your place of work.

To be considered for an apprenticeships programme in England​, you need to be:

  • aged 16 or over
  • living in England
  • not in full-time education

Apprenticeships would suit someone who:

  • has a clear idea of the type of career they wish to pursue
  • is willing to commit to work and study, but would prefer a more practical and work-related approach to learning
  • is ready to start work with an employer, and be based in the workplace most of the time
  • is well organised and able to cope with the competing demands of work and academic study at the same time
  • is ready to be assessed through a mix of assignments and written work, including essays, reports, practical exercises, end tests, and exams

No matter what kind of career you want to follow, you need to do your research and find out if you can reach your career goals through an apprenticeship, or if you need/would prefer to study full-time at university or college.

Apprenticeships aren’t the ‘easy’ option. Holding down a full-time job and studying takes commitment and hard work, and it won’t be right for everyone.  You’ll need to prove yourself in the workplace, while getting to grips with studying for a higher level qualification. You’ll be expected to achieve academically and at work, managing your time and adjusting to longer hours, with fewer holidays than at school, college, or university. You might have to travel or relocate to find the right opportunity for you.

For more information for 2021 call us on 01454 318 000

 

To speak with Powersystems, please contact us by...

Phone

01454 318000

Email

enquiries@powersystemsuk.com

Talk

Request a call back

Powersystems UK Delivering Greener Power Solutions

Powersystems guide to grid connection for your EV infrastructure

Powersystems guide to grid connection for your EV infrastructure

Powersystems guide to grid connection for Bus and Fleet Electric Vehicle (EV) infrastructure

Securing grid capacity for your electric vehicle, bus, van or fleet project is of paramount importance, even before proceeding with vehicle procurement.

Historically most bus garage sites are generally connected to the distribution system at LV (Low Voltage 415 v three phase), it is unusual to find a site with in excess of a 250 kva supply capacity, as generally these sites load characteristics would only cater for lighting, workshop power, MOT test bays and vehicle washes etc. The transformation from diesel buses to all electric can be a complicated process for a garage infrastructure and failure to secure grid capacity can lead operators to the exposure of potentially high and in cases up to six figure connection costs.

Traditionally an electricity board would have provided connection services to a customers premises, however in the mid-90s under OFGEM regulations, the connection monopolies were removed and with the transition to Regional Electricity Companies and now Distribution Network Operators, the regulator encouraged the competition in connection regulations and now managed under an Accredited Contractors Scheme by Lloyds Register.

This brought Independent Connection Provides (ICPs) who could now once accredited, design, manage, install, test and commission new supply grid connection assets under this scheme (Powersystems UK Ltd were the first contractor in the UK to attain this status), which at last brought competition into the electricity connections market.

The advantages of engaging an ICP to manage all aspects of your connection will have commercial cost advantages, in that they will be to a degree risk adverse, work to agreed timescales and on a contracted basis (often accepting contract damages for failure to meet agreed deadlines) and to a fixed price. The Commercial benefit for a customer or operator is that agreed payment milestones would also be agreed, allowing clients to manage cap-ex and cash flow throughout all stages of the project.

As an ICP, Powersystems UK can guide a customer or operator through the grid application process, or indeed handle this on a client’s behalf. It is important that a customers site is subjected to a site capacity survey, a service Powersystems carry out as a free of charge service, advice on can the DNO network support additional capacity, upgrading of existing HV/LV installations if possible, advise on time frames to deliver the project, engagement with other external stakeholders such as Local Council Highways, Network Rail, Transport for London (TFL) all essential for grid route planning.

An ICP would be able to carry out all the normal functions a DNO will offer to include but not limited to:

Design, project management, cable laying, cable jointing, substation installation for equipment and networks from LV up to voltage levels of 132,000v. As well as all associated civil engineering works including excavation, cable laying and back filling.

An ICP will be able to engage on a customer’s behalf an IDNO (Independent Distribution Network Operator) to adopt the newly connected infrastructure, as opposed to paying for a new supply upgrade to a DNO where they retain and adopt the new connection at the customers expense. If an IDNO is engaged in lieu of the DNO they will still operate in exactly the same way, except the customer will be paid an asset adoption value which will offset their connection cost in the first instance.

For more information call our EV Infrastructure specialists on  01454 318 000

 

To speak with Powersystems, please contact us by...

Phone

01454 318000

Email

enquiries@powersystemsuk.com

Talk

Request a call back

Powersystems UK Delivering Greener Power Solutions

Powersystems accepted by JOSCAR

Powersystems accepted by JOSCAR

Powersystems accepted by JOSCAR

Powersystems – your High Voltage (HV) specialist partners – are proud to announce that we have been successfully accepted into the JOSCAR register and are now recognised as a fully compliant supplier for several defence companies and major organisations.

What is the JOSCAR register?

JOSCAR stands for the Joint Supply Chain Accreditation Register. The JOSCAR register is a central register of approved suppliers which are used by several major defence organisations including BAE Systems, NATS, Airbus and the MOD when implementing new projects.

This register is strictly invite-only and requires successful completion of a qualification process.

JOSCAR

What does this mean for our current and prospective clients?

Being included on the JOSCAR register is somewhat of a coup by Powersystems and something we are very proud of. It means that we join an elite group of suppliers that have been hand-picked by some of the most established organisations in the country.

This seal of approval means that our current and future clients can have extra confidence in Powersystems and our services as we have the capacity and technical ability to deliver on projects of this scale.

In addition, all of these organisations have strict security requirements and this is becoming more and more important to clients of all sizes, especially in the wake of GDPR. This again helps to inform our clients that we meet these high levels of protection for their systems

How can I find out more?

If you are interested in finding out more, further details are available on the Hellios website

Following successful projects Powersystems are proud to be involved in local and national industry and look forward to working closely with partners in further exciting projects next year and beyond.

To speak with the high voltage infrastructure team call us on 01454 318000
Email us on enquiries@powersystemsuk.com

To speak with Powersystems, please contact us by...

Phone

01454 318000

Email

enquiries@powersystemsuk.com

Talk

Request a call back

Powersystems UK Delivering Greener Power Solutions

Pin It on Pinterest